חATIIBIA UTIVERSITY OF SCIEMCE AחD TECHחOLOGY

Faculty of Health and Applied Sciences

Department of Health Sciences

QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES BACHELOR OF SCIENCES IN HEALTH INFORMATION SYSTEMS MANAGEMENT BACHELOR OF HUMAN NUTRITION	
QUALIFICATION CODE: O8BMLS O8BOHS O7BHIS 08BOHN	LEVEL: 5
COURSE: HEALTH SCIENCE CHEMISTRY	COURSE CODE: HSC511S
DATE: JULY 2019	SESSION:
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Dr. Yapo Guillaume Aboua \& Mr. David Nanhapo
MODERATOR:	Dr. Marius Mutorwa

INSTRUCTIONS

1. Answer all questions.
2. Please write neatly and legibly.
3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.

Permissible Material

Non-programmable calculator is allowed.
Attachment: Periodic Table and formulas
THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page)

MATMIBIA URIVERSITY

 of SCIEMCE AMD TECHMOLOGY
SECTION A [30]

QUESTION 1:

SELECT ONLY ONE APPROPRIATE ANSWER FROM THE GIVEN POSSIBILITIES

1.1. Identify the correct order of boiling point
a. $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{GeH}_{4}<\mathrm{SnH}_{4}$
b. $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
c. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
d. All are correct
1.2. The general formula of monosaccharides is
a. $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2 n}$
b. $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2} \mathrm{O}_{2 n}$
c. $\mathrm{C}_{2 n} \mathrm{H}_{2} \mathrm{O}_{\mathrm{n}}$
d. $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{\mathrm{n}}$
1.3. A sugar alcohol is
a. Arabinose
b. Trehalose
c. Xylulose
d. Mannitol
1.4. Starch is a
a. Polysaccharide
b. Monosaccharide
c. Disaccharide
d. None of these.

MATIBIA UחIVERSITY
of science and technology
1.5. The most abundant carbohydrate found in nature is
a. Starch
b. Cellulose.
c. Glycogen.
d. Chitin.
1.6. Volumes of gaseous reactants and products in a chemical reaction can be expressed as ratios of small whole number;
a. If all reactants and products are gases
b. If standard temperature and pressure are maintained
c. If constant temperature and pressure are maintained
d. If each mass equals 1 mol
1.7. If the temperature of a container of gas remains constant, how could the pressure of the gas increase?
a. The mass of the gas molecules increases.
b. The diffusion of the gas molecules increases.
c. The size of the container increases.
d. The number of gas molecules in the container increases.
1.8. Which one of the following best defines the word "allotropes"?
a. Elements that possess properties intermediate between those of metals and nonmetals
b. Different structural forms of an element
c. Atoms of a given atomic number that have a specific number of neutrons
d. A pair of substances that differ by H^{+}

MAMIBIA UחIVERSITY
OF SCIERCE AחD TECHחOLOGY
1.9. Which one of the following statements is false?
a. The masses of protons and neutrons are approximately the same.
b. Calcium commonly forms the $\mathrm{Ca}^{2}+$ and cation.
c. If an atom gains electron it becomes negatively charged and is called an anion.
d. Different isotopes of the same element have different chemical behaviour
1.10. In term of compositions, a dilute solution contains
a. A lot of solute in a given amount of solvent
b. A lot of solvent in a given amount of solute
c. little solute in a given amount of solvent
d. As much solute as the given amount of solvent
1.11. How many significant figures are in $3.408 \times 10^{4} \mathrm{~m}$?
a. 3
b. 4
c. 5
d. 7
1.12. In terms of bonding, elements found in group 5 tend to;
a. Lose five electrons
b. Lose three electrons
c. Gain three electrons
d. Gain five electrons

ПATIIBIA UПIVERSITY

 DF SCIEMCE AMD TECHMOLQGY1.13. The products formed when an acid and a metal react are;
a. Salt and Water
b. Salt and Hydrogen
c. Salt, Hydrogen and Water
d. Salt, Carbon dioxide and Water
1.14. The ability of a measurement to be as close to the true value as possible is defined as:
a. Accuracy
b. Precision
c. significant figure
d. All the above
1.15. At constant pressure, the volume of a gas sample is \qquad proportional to its \qquad temperature
a. Directly; Celsius
b. Inversely; Celsius
c. Directly; Kelvin
d. Inversely; Kelvin

MATIIBIA UTIVERSITY
OF SCIEMCE AMD TECHMOLQGY

QUESTION 2:

FILL THE BLANKS BY ONLY WRITING DOWN THE NUMBER AND THE CORRECT EXPRESSION.

2.1. The pressure of a gas is directly proportional to the number of moles of the gas if both volume and \qquad are constant.
2.2. The force per unit area on a surface is called \qquad .
2.3. The pressure exerted by each gas in a mixture is called the \qquad of that gas.
2.4. The lowest possible temperature, corresponding to zero on the kelvin scale, is referred to as \qquad _.
2.5. \qquad law establishes that equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.
2.6. When salt dissolves in water, the water is the \qquad .
2.7. If a sample of solid matter is uniform throughout and cannot be separated into other substances by physical means, it is \qquad —.
2.8. \qquad are different structural modifications of the same chemical element that exist in two or more different forms, in the same physical state (e.g Diamond, Graphite).
2.9. \qquad are atoms of different elements having same number of neutrons.
2.10. Sour cream and Salt solutions are example of \qquad —.
2.11. Sublimation is the process of transformation of a state of matter from a
\qquad to gas.
2.12. \qquad law states that the volume of a fixed mass of gas varies inversely with the pressure at constant temperature.
2.13. The separation process of a solid component of a mixture, based on its property to pass through heating direct from the solid phase into the gaseous phase, without melting, is called \qquad .
2.14. \qquad is the technique of heating a liquid to create vapor which is collected when cooled separate from the original liquid.
2.15. \qquad are a large class of naturally occurring polyhydroxy aldehydes and ketones.

MATIIBIA UПIVERSITY

 OF SCIEMCE AMD TECHMOLOGY
SECTION B [70]

QUESTION 3

3.1. Match the items given in Column I and Column II by only writing down the number and the letter

Column I

1. Saturated solution
2. Binary solution
3. Isotonic solution
4. Hypotonic solution
5. Solid solution

Column II

A. Solution having same osmotic pressure at a given temperature as that of given solution.
B. A solution whose osmotic pressure is less than that of another.
C. Solution with two components.
D. A solution which contains maximum amount of solute that can be dissolved in a given amount of solvent at a given temperature.
E. A solution whose osmotic pressure is more than that of another.
F. A solution in solid phase.

G Hypertonic solution
H Solid state only
3.2. Complete the following table by filling in the compound name or formula as required.

Name	Formula
lead(II) chloride	
dinitrogen trioxide	
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
	SF_{6}
calcium phosphate	

3.3. Name and label four (4) functional groups in the structure and indicate primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$ or tertiary $\left(3^{\circ}\right)$ structure.

3.4. Name structures A, B and C

QUESTION 4
4.1. During a practical class you have been asked:
a. To calculate the mass of 0.37 mol of barium chloride.
b. What amount (mol) of solute is there in 125 mL of a 0.864 M solution?
c. An organic compound containing only carbon, hydrogen and oxygen returns the \% mass analysis: C 64.9%; 13.5%. What is its empirical formula?
d. Calculate the mass of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ required to make 250 mL of a 0.100 M solution.
e. In an experiment, 5.0 g of magnesium was dissolved in excess hydrochloric acid to give magnesium ions and hydrogen gas according to the following equation:

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \Longrightarrow \begin{gathered}
\text { MAMIBIA URIVERSITY } \\
\text { OFSCIEMCE A DTECHOOLOGY }
\end{gathered}
$$

What amount of hydrogen gas (in mol) is produced in the reaction?
4.2. Calculate the molarity of the following:
a A commercial bleach solution contains 5.25% (by mass) of NaClO in water. It has a density of $1.08 \mathrm{~g} / \mathrm{mL}$ (Hints: assume you have 1.00 L of solution; molar mass of NaClO $74.4 \mathrm{~g} / \mathrm{mol})$
b A 15.0% solution of NaOH has 15.0 g for 100 g of solution
4.3. Pure formic acid (HCOOH), is a liquid monoprotic acid decomposed by heat to carbon dioxide and hydrogen.
a. What mass of the pure acid should be diluted with water to produce 1.00 litre of 2.00

M aqueous solution of formic acid?
b. What volume of 0.250 M sodium hydroxide would be required to react exactly with
$30.0 \mathrm{~cm}^{3}$ of this dilute solution of formic acid?
c. What is the maximum volume of carbon dioxide at 273 K and 1.00 atmosphere that could be obtained by heating 1.00 mole of formic acid?
d. How many molecules of carbon dioxide would it contain?
4.4. One of the components of petrol is octane, $\mathrm{C}_{8} \mathrm{H}_{18}$.
a. Write the balanced equation for the complete combustion of octane (with O_{2}) to form carbon dioxide gas and liquid water.
b. What amount (in mol) of carbon dioxide is formed when $5.5 \mathrm{~mol}(1 \mathrm{~L})$ of petrol is burnt?
c. What volume of carbon dioxide would this represent at standard temperature and pressure?

MAMIBIA UחIVERSITY

OF SCIEMCE ATD TECHחOLOGY

QUESTION 5

5.1 The pressure of a mass of gas is increased from 150 kPa to 750 kPa at constant temperature Determine the final volume of the gas, if its initial volume is $1.5 \mathrm{~m}^{3}$
5.2 A quantity of gas in a cylinder occupies a volume of $2 \mathrm{~m}^{3}$ at a pressure of 300 kPa .

A piston slides in the cylinder and compresses the gas, according to Boyle's law, until the volume is $0.5 \mathrm{~m}^{3}$. If the area of the piston is $0.02 \mathrm{~m}^{2}$, calculate the force on the piston when the gas is compressed.
5.3. A pressure vessel is subjected to a gas pressure of 8 atmospheres at a temperature of $5^{\circ} \mathrm{C}$. The vessel can withstand a maximum pressure of 28 atmospheres. Calculate the gas temperature increase the vessel can withstand.

END OF EXAM QUESTIONS

MATIIBIA UMIVERSITY
OF SCIEMCE RMD TECHMOLOGY
ur >LIEILE HIIU IELHIIULUGY

MATMIBIA UMIVERSITY

OF SCIEMCE AMD TECHחOLOGY

Avogadro constant $N_{A}=6.022 \times 1023 \mathrm{~mol}^{-1}$

